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PROJECTED NONLINEAR LEAST SQUARES
FOR EXPONENTIAL FITTING∗

JEFFREY M. HOKANSON†

Abstract. The modern ability to collect vast quantities of data provides a challenge for param-
eter estimation. When posed as a nonlinear least squares problem fitting a model to data, the cost
of each iteration grows linearly with the amount of data and with large data it can easily become
too expensive to perform many iterations. Here we reduce the cost of each iteration by orthogonally
projecting the data onto a low-dimensional subspace preserving the quality of the resulting parame-
ter estimates. We provide results from both an optimization and a statistical perspective that show
accurate parameter estimates are recovered when the subspace angles between this subspace and the
range Jacobian of the model at the current iterate remain small. However, for this approach to re-
duce computational complexity, both the projected model and projected Jacobian must be computed
inexpensively. This places a constraint on the pairs of models and subspaces for which this approach
provides a computational speedup. Here we consider the exponential fitting problem projected onto
the range of a Vandermonde matrix for which both the projected model and projected Jacobian
can be computed in closed form using a generalized geometric sum formula. We further provide
an inexpensive heuristic for choosing this Vandermonde matrix which ensures the subspace angles
with the Jacobian remain small, and use this heuristic to update the subspace during optimization.
Although the asymptotic cost still depends on the data dimension, the overall cost of solving this
sequence of projected problems is significantly less expensive than the original.
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1. Introduction. With the increasing prowess of data acquisition hardware and
storage, collecting vast amounts of data has become trivial. This poses a challenge for
parameter estimation problems where the sheer scale of data makes these problems
expensive. Here we consider a nonlinear least squares parameter estimation prob-
lem [12] that seeks to fit a model f with q parameters θ ∈ Cq to (noisy) measurements
ỹ, yielding a (noisy) parameter estimate θ̃ that minimizes the 2-norm mismatch:

(1) θ̃ := argmin
θ∈Cq

‖f(θ)− ỹ‖22, where f : Cq → Cn, ỹ ∈ Cn, q � n.

With vast quantities of data, the asymptotic cost of solving this problem is dominated
by the n-dependent steps in the optimization. For example, using either Gauss–
Newton or Levenberg–Marquardt, each optimization step solves a least squares prob-
lem involving the Jacobian of f , J : Cq → Cn×q, at a cost of O(nq2) operations.
To reduce this cost, we propose replacing the full least squares problem (1) with a
sequence of low-dimensional surrogate problems by projecting measurements ỹ onto
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a sequence of subspaces {W`}` ⊂ Cn with m` := dimW` � n:

(2) θ̃W`
:= argmin

θ∈Cq

‖PW`
[f(θ)−ỹ ]‖22 = argmin

θ∈Cq

‖W∗
` f(θ)−W∗

` ỹ‖22, PW`
= W`W

∗
` ,

where PW`
is an orthogonal projector onto W` and W` ∈ Cn×m` is an orthonormal

basis for W`. Although the total cost is still asymptotically n-dependent due to the
multiplication W∗

` ỹ, each optimization step is cheaper since the projected Jacobian
W∗

`J(θ) is smaller. However, for this computational speedup to be fully realized, the
products W∗

` f(θ) and W∗
`J(θ) need to be formed without the expensive, n-dependent

multiplication. Additionally, we must ensure that the final projected parameter esti-
mate θ̃W`

remains a good estimate of the full parameter estimate using the original
data, θ̃. Here we do so by requiring the subspace angles betweenW` and the Jacobian
at the current iterate remain small. This requirement is justified by perspectives from
both optimization and statistics. From an optimization perspective described in sec-
tion 2, the accuracy of each optimization step depends on these subspace angles, and
when the subspace angles go to zero, the projected parameter estimate θ̃W`

is equal
to the full parameter estimate θ̃. From a statistical perspective described in section 3,
when measurements ỹ are contaminated by additive Gaussian noise, the covariance
of projected parameter estimate θ̃W`

is larger than the covariance of full parameter
estimate θ̃ by an amount that scales with these subspace angles as measured by ef-
ficiency. Hence the subspace angles between W` and the Jacobian at the current
iterate determine the quality of our projected parameter estimate θ̃W`

. The challenge
in applying this projected nonlinear least squares approach to a specific problem is
satisfying both criteria simultaneously: finding a sequence of subspaces {W`}` with
orthogonal bases {W`}` where W∗

` f(θ) and W∗
`J(θ) can be formed inexpensively

independently of n and where the subspace angles betweenW` and the range of J(θk)
for each iterate θk remain small.

Here we consider the exponential fitting problem [27], also known as modal analy-
sis [5], harmonic estimation [18], and spectral analysis [34], that seeks to approximate
data ỹ as a sum of p complex exponentials with frequencies ω and amplitudes a, where

(3) [f([ω,a])]j =
p∑
k=1

ake
jωk , ω,a ∈ Cp; θ = [ω,a], q = 2p.

There is an extensive body of literature on this problem, with a wide array of meth-
ods for recovering the frequencies ω: from classical approaches such as Prony’s
method [28], to subspace methods [13] such as HSVD [1], HTLS [40], and the matrix-
pencil method [16], to parameter estimation approaches using optimization (such as
ours) [12, 39], to more recent approaches based on ideas from sparse recovery [35],
and many others described in reviews [17, 20, 27, 37]. We choose this problem due
to the exploitable structure of the model function f([ω,a]) that allows us to obtain
inexpensive inner products with subspaces that approximately contain the range of
the Jacobian. Specifically, as the model function is the product of a Vandermonde
matrix V(ω) with the amplitudes a,

(4) f([ω,a]) = V(ω)a, [V(ω)]j,k = ejωk ,

by projecting measurements onto the subspace W(µ),

(5) W(µ) := Range V(µ) = Range W(µ), W(µ)∗W(µ) = I, µ ∈ Cm,
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Fig. 1. Parameter estimates from a toy exponential fitting problem with true parameters ω̂ =
−0.01 and â = 1 using n = 1000 measurements contaminated with zero-mean Gaussian noise g with
Cov g = 0.01I, ỹ = f([−0.01, 1]) + g. The parameter estimates on the left are computed by solving
(1) with all measurements ỹ. In the center, the parameter estimates are computed by solving (2)
using a subspace that selects every 10th measurement. On the right, the parameter estimates are
also computed by solving (2), but instead using the subspace W(µ) where µ = [−0.008 ± 0.0014i].
In each case, the resulting nonlinear least squares problem was solved using the MATLAB routine
lsqnonlin. Efficiency, defined in section 3, quantifies how close the covariance of the projected
problem resembles the full problem (left). As this example shows, the projected parameter estimate
with well-chosen subspace yields parameter estimates almost identical to those of the full problem.

we can inexpensively obtain the inner products W(µ)∗f([ω,a]) and W(µ)∗J([ω,a])
as described in section 4 using the geometric sum formula and its generalization given
in Appendix B. Further, using a heuristic described in section 5, we can ensure the
subspace angles betweenW(µ) and Range J([ω,a]) remain small by a careful selection
of µ. The net result is a faster solution to the exponential fitting problem in the limit
of large data, as illustrated by a magnetic resonance spectroscopy test case in section 7.
Further, due to careful selection of the subspaces, the projected parameter estimate
θ̃W remains close to the full parameter estimate θ̃, as seen in Figure 1 for a toy
problem and in Figure 4 for the magnetic resonance spectroscopy test case.

Projection is a recurring theme in applied mathematics, appearing in a variety
of contexts from Galerkin projections for solving partial differential equations to the
randomized projections that form the foundation of randomized numerical linear al-
gebra. Our projection approach for solving a nonlinear least squares problem fits
into this theme and it is not without precedent. Incremental methods, such as incre-
mental gradient [3] and the extended Kalman filter [2], when applied to a nonlinear
least squares problem can be interpreted as projecting onto a row (or set of rows) at
each iteration, choosing the basis W` = [I]·,I`

, where I` is the set of rows at the `th
step. With this perspective, we note that both our method and incremental methods
require the projected model W∗

` f(θ) and projected Jacobian W∗
`J(θ) to be formed

inexpensively. Satisfying this requirement is straightforward for incremental methods
when f(θ) is defined entrywise, whereas in our case we must be careful to choose
the orthonormal basis W` such that these products can be, for example, evaluated
in closed form. However, these methods differ in how the basis W` is chosen. For
incremental methods, the set of rows is typically chosen either deterministically by
cycling through rows or by randomly selecting rows [8]; whereas in our case, we care-
fully choose the basis W` such that our steps are accurate, and, when the data is
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contaminated by noise, our parameter estimates are precise.

2. An optimization perspective. In this section we provide three different
results that inform the choice of subspace W` from the perspective of optimization.
Each of these results points to the key role played by the principal subspace angles
between the subspace W` and the range of the Jacobian at the current iterate. These
principal subspace angles are defined as follows: if A and B are two subspaces of Cn
and if A ∈ Cn×ma and B ∈ Cn×mb are orthonormal bases for A and B, then the
principal subspace angles φk(A,B) between A and B are [11, section 6.4.3]
(6)

cosφk(A,B) :=σk(A∗B), 0≤φ1(A,B)≤φ2(A,B)≤ · · · ≤φmin{ma,mb}(A,B)≤π/2,

where σk(X) is the kth singular value of X in descending order. Our first result in
subsection 2.1 uses the first order necessary conditions to observe that the projected
problem will have the same stationary points as the full problem when the subspace
angles between the W and the range of the Jacobian at the stationary point are zero.
Our second result in subsection 2.2 shows that the difference between the Gauss–
Newton steps of the full and projected problems depends on the subspace angles
between W` and the range of the Jacobian at the current iterate. Our third result in
subsection 2.3 interprets the Levenberg–Marquardt method applied to the projected
problem as computing inexact steps of the Levenberg–Marquardt method applied to
the full problem. We show that by making the subspace angles between W` and the
range of the Jacobian at the current iterate small, we can satisfy one of the conditions
for the convergence of inexact Newton. Each result suggests that the subspace angles
between W` and the range of the Jacobian at the current iterate should be small.

2.1. First order optimality. The first order necessary conditions for a point
qθ to be a local optimum require that the gradient of the objective function at this
point be zero. In the context of nonlinear least squares, where the gradient of the full
problem (1) is

(7) ∇θ ‖f(θ)− ỹ‖22 = 2 J(θ)∗r(θ), r(θ) := f(θ)− ỹ, [J(θ)]·,k :=
∂r(θ)
∂[θ]k

,

a point qθ satisfies the first order necessary conditions if

(8) J(qθ)∗r(qθ) = 0.

Similarly for the projected problem (2), a point qθW will satisfy the first order necessary
conditions for the projected problem if

(9) J(qθW)∗PWr(qθW) = 0.

To assess the quality of the projected problem, we ask, Under what conditions will
qθW also satisfy the first order necessary conditions for the full problem (8)? There are
two conditions under which this happens. The zero-residual case, where r(qθW) = 0,
implies that measurements ỹ exactly fit the model f . This situation makes the problem
easy to solve, as any subspace W that yields a well-posed optimization problem can
be used. The other, more general situation occurs when W contains the range of the
Jacobian, as then PWJ(qθW) = J(qθW). This is equivalent to requiring all the subspace
angles between W and Range J(qθW) to be zero. The challenge with this condition is
that it is black or white: either the W contains the range of the Jacobian or it does
not. In the next two subsections we suggest other requirements onW that allow more
shades of gray.
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2.2. Proximity of steps. Another result that provides insight into the choice
of subspace W comes from considering the Gauss–Newton step [26, section 10.3] for
the full and projected problems at θ:

(10) s = −J(θ)+r(θ) (full), sW = −[PWJ(θ)]+PWr(θ) (projected),

where A+ denotes the pseudoinverse of A [11, section 5.5.2]. We bound the difference
between these two steps using Lemma A.1 from Appendix A, removing terms involving
the subspace angle between W and the span of r(θ) using the upper bound of one on
both the sine and cosine.

Theorem 2.1 (Gauss–Newton step accuracy). Let s and sW be the Gauss–
Newton steps for the full and projected problems at θ as given in (10); then their
mismatch is bounded by

(11) ‖s− sW‖2 ≤ ‖J(θ)+‖2 ‖r(θ)‖2
[
sinφq(W,J (θ)) + tan2 φq(W,J (θ))

]
,

where J (θ) := Range J(θ).

Using this theorem, we can provide a heuristic for estimating the mismatch
between the full and projected parameter estimates. Applying the Gauss–Newton
method to the full problem starting at a stationary point of the projected problem
qθW , we note the first step cannot move further than

(12) ‖s‖2 ≤ ‖J(qθW)+‖2 ‖r(qθW)‖2
[
sinφq(W,J (qθW)) + tan2 φq(W,J (qθW))

]
.

Although multiple iterations of the Gauss–Newton method might be required to reach
a stationary point of the full problem, if qθW is sufficiently close to a stationary point
qθ of the full problem, then we expect this first step to yield a good estimate; i.e.,
qθW + s ≈ qθ. This suggests choosing subspaces W to minimize the largest subspace
angle between W and the range of Jacobian at the stationary point of the projected
problem J (qθW) to ensure the full and projected parameter estimates are nearby.

2.3. Inexact Levenberg–Marquardt. A third and final result that provides
insight into the choice of subspaceW comes from considering steps of the Levenberg–
Marquardt method [26, section 10.3] applied to the projected problem (2) as inexact
steps of the Levenberg–Marquardt method applied to the full problem (1). For the
full problem, the Levenberg–Marquardt method generates a sequence of iterates {θk}k
starting from a given θ0 using the rule

(13) θk+1 = θk + sk, sk := argmin
s∈Cq

∥∥∥∥[J(θk)
λkI

]
s +

[
r(θk)

0

]∥∥∥∥2

2
,

where λk has been chosen to enforce a trust region; see, e.g., [21, section 3.3.5].
Iterates of the projected problem {θ̃k}k≥0 follow a similar update rule:

(14) θ̃k+1 = θ̃k + s̃k, s̃k := argmin
s∈Cq

∥∥∥∥[W∗
kJ(θk)
λkI

]
s +

[
W∗

kr(θk)
0

]∥∥∥∥2

2
,

where Wk is the orthonormal basis for the subspace applied at the kth step. Here
we ask, Under what conditions on Wk does the sequence {θ̃k}k converge to the same
point as {θk}k? Although we are unable to prove the convergence of the projected
iterates unless the subspace angles between J (θ̃k) and Wk go to zero, we invoke the
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convergence analysis of inexact Newton [4], and specific results for inexact Levenberg–
Marquardt [41], to suggest a choice ofWk. These convergence results require that the
error in the step s̃k be bounded by a forcing sequence {αk}k:

(15)
‖(J(θ̃k)∗J(θ̃k) + λ2

kI)s̃k + J(θ̃k)∗r(θ̃k)‖2
‖J(θ̃k)∗r(θ̃k)‖2

≤ αk < α < 1.

Here we show that the quantity on the left can be bounded above in terms of the
subspace angles and that this quantity can be made arbitrarily small.

To bound (15) we use a result from Appendix A applied to the augmented sub-
space, Jacobian, and residual in the least squares problem for s̃k, (14):

Ŵk := Range
[
Wk 0
0 I

]
, Ĵk :=

[
J(θ̃k)
λkI

]
, r̂k :=

[
r(θk)

0

]
.

Then applying Lemma A.2 to (14) and bounding cosφ1(Ĵk, Ŵk) ≤ 1 yields

(16)
‖(J(θ̃k)∗J(θ̃k) + λ2

kI)s̃k + J(θ̃k)∗r(θ̃k)‖2
‖J(θ̃k)∗r(θ̃k)‖2

≤ sinφq(Ŵk, Ĵk)

cos2 φq(Ŵk, Ĵk)

‖Ĵk‖2‖P⊥Ĵk
r̂k‖2

‖J(θ̃k)∗r(θ̃k)‖2
,

where Ĵk := Range Ĵk, R̂k := Range r̂k, and P⊥Ĵk
denotes the orthogonal projector

onto the subspace perpendicular to Ĵk. To obtain an expression in terms of subspace
angles, we note the numerator can be written in terms of sines,

‖P⊥Ĵk
r̂k‖2 = sinφ1(Ĵk, R̂k)‖r̂k‖2 = sinφ1(Ĵk, R̂k)‖r(θ̃k)‖2,

and similarly we can bound the denominator in terms of subspace angles,

‖J(θ̃k)∗r(θ̃k)‖2 = ‖Ĵ
∗
kr̂k‖2 = ‖Ĵ

∗
kPĴk

r̂k‖2 ≥ σq(Ĵk) cosφ1(Ĵk, R̂k)‖r(θ̃k)‖2.

Combining these two results yields the upper bound

(17)
‖(J(θ̃k)∗J(θ̃k)+λ2

kI)s̃k+J(θ̃k)∗r(θ̃k)‖2
‖J(θ̃k)∗r(θ̃k)‖2

≤ sinφq(Ŵk, Ĵk) tanφ1(Ĵk, R̂k)

cos2 φq(Ŵk, Ĵk)

σ1(Ĵk)

σq(Ĵk)
.

This result again confirms the centrality of the subspace angles between W and
the range of the Jacobian, although in this result, it is the augmented subspace Ŵk

and augmented Jacobian Ĵk. By controlling the subspace Wk, we can ensure that
the bound in (17) is smaller than one so that step s̃k obeys the bound required by
inexact Newton (15). This suggests that the Levenberg–Marquardt method applied
to the projected problem makes progress toward solving the full problem. However,
this result cannot be used online as it requires evaluating the full residual to compute
φ1(Ĵk, R̂k). Nor can we use this result to guarantee convergence since Wright and
Holt’s convergence result for inexact Levenberg–Marquardt [41, Thm. 5] requires an
additional sufficient decrease condition. The projected problem is unlikely to satisfy
this additional constraint since the projected problem converges to different stationary
points unless the subspace angles between Wk and J (θ̃k) go to zero as k →∞. This
prompts the statistical approach we use in the next section to answer the question,
How close are the projected parameter estimates to the full parameter estimates?
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3. A statistical perspective. One setting in which the nonlinear least squares
problem (1) can arise is when measurements ỹ are the sum of f evaluated at some true
parameters θ̂ ∈ Cq plus Gaussian random noise g with zero mean and covariance ε2I;
ỹ = f(θ̂) + g. Then the nonlinear least squares problem,

(18) θ̃(g) := argmin
θ
‖f(θ)− (f(θ̂) + g)‖2,

yields the maximum likelihood estimate θ̃ of θ̂ [32, section 2.1]. This estimate has a
number of beneficial features. In the limit of large data or small noise, the estimator
θ̃ is unbiased and obtains the Cramér–Rao lower bound, namely, θ̃ has the small-
est possible covariance of any unbiased estimator of θ̂ [30, section 6.3]. Hence, the
corresponding projected parameter estimate

(19) θ̃W(g) := argmin
θ
‖PW [ f(θ)− (f(θ̂) + g) ]‖2

must have a larger covariance. By using the inexpensive projected parameter estimate
θ̃W as an alternative to full parameter estimate θ̃, we are following in a tradition that
dates back to Fisher [7, section 8]. Fisher quantified the loss of precision incurred by
a particular scalar estimator by the efficiency : the ratio of the minimum covariance
to the estimator’s covariance. For our vector valued estimates, the covariance is a
positive definite matrix in Cq×q, and so to obtain a scalar value for the efficiency
ratio, we follow the lead of experimental design [33, section 2.1], [24, section 1.4] and
consider the determinant of the covariance matrix, which leads to the D-efficiency

(20) η̂(W) :=
det Cov θ̃

det Cov θ̃W
∈ [0, 1].

In choosing our subspaceW, our goal will be to make the efficiency as large as possible
so that the covariances of the estimates for θ̃W and θ̃ are similar. However, as θ̃ and
θ̃W are both nonlinear functions of the noise g, we cannot compute a closed form
expression for the efficiency. Instead, following a standard approach for nonlinear
experimental design [6, section 1.4], we linearize the parameter estimates θ̃ and θ̃W
about θ̂, yielding the linearized D-efficiency as derived in subsection 3.1. The main
result of this section will be to connect linearized efficiency to the subspace angles
between W and the range of the Jacobian at θ̂, J (θ̂):

(21) η(W,J (θ̂)) :=
det[J(θ̂)∗J(θ̂)]−1

det[J(θ̂)∗PWJ(θ̂)]−1
=

q∏
k=1

cos2 φq(W,J (θ̂)) ≈ det Cov θ̃

det Cov θ̃W
.

We will refer to η as simply the efficiency, and following Fisher we will say a subspace
W is 95% efficient for θ̂ if η(W,J (θ̂)) = 0.95. Later in section 5 we will design sub-
spaces for the exponential fitting problem with the goal of obtaining a target efficiency.
Further, note that maximizing efficiency corresponds to minimizing the covariance of
θ̃W , and hence selecting the subspace W is similar to experimental design [6, 33, 24],
albeit where the design is happening after the data has been collected.

3.1. Linearized efficiency. Here we briefly derive the linearized estimate of
θ̃W and the corresponding linearized covariance; cf. [32, section 12.2.6]. In the limit
of small noise g, we expand θ̃W about the true parameters θ̂:

(22) θ̃W(g) = θ̂ + [W∗J(θ̂)]+W∗g +O(‖g‖22).
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Applying this first order estimate in the covariance, we have

Cov θ̃W = Eg[(θ̂ − θ̃W(g))(θ̂ − θ̃W(g))∗]

≈ Eg

[
[W∗J(θ̂)]+∗W∗gg∗W[W∗J(θ̂)]+

]
= ε2[J(θ̂)∗WW∗J(θ̂)]−1

(23)

when Cov g = ε2I. To obtain the D-linearized efficiency (21), we replace Cov θ̃ and
Cov θ̃W with the estimate above.

3.2. Relating efficiency to subspace angles. As with the optimization per-
spective, a good subspace from a statistical perspective will have small subspace
angles between W and the Jacobian J (θ̂). The following theorem establishes this
connection.

Theorem 3.1. If W is an m-dimensional subspace of Cn with orthonormal basis
W and J ∈ Cn×q, where m ≥ q with J := Range J, then

(24) η(W,J ) :=
det([J∗J]−1)

det([J∗WW∗J]−1)
=

q∏
k=1

cos2 φk (W,J ) ,

where φk(A,B) is the kth principal angle between A,B ⊂ Cn, as defined in (6).

Proof. Let J = QT be the short-form QR-factorization of J, where Q∗Q = I.
Then using the multiplicative property of the determinant [14, section 0.3.5],

η(W,J ) =
det(J∗WW∗J)

det(J∗J)
=

det(Q∗WW∗Q) det(T) det(T∗)
det(Q∗Q) det(T) det(T∗)

= det(Q∗WW∗Q) =
q∏

k=1

σk(W∗Q)2 =
q∏

k=1

cos2 φk(W,J ).

3.3. Properties of efficiency for projected problems. We conclude this
section with three results about the linearized D-efficiency that aid in our construction
of subspaces for exponential fitting in section 5. There, our approach will be to
precompute a finite number of subspaces for a single exponential and combine these
to produce subspaces for multiple exponentials.

The first result proves an intuitive fact: by enlarging the subspace W, the effi-
ciency will not decrease. The following theorem establishes this result, making use of
the partial ordering of positive definite matrices; namely, A � B if A−B is positive
definite [14, section 7.7].

Theorem 3.2. IfW1 ⊆ W2 and J are subspaces of Cn, then η(W1,J ) ≤ η(W2,J ).

Proof. Let W1 and W2 be orthonormal bases for W1 and W2, and let Q be an
orthonormal basis for J . Then W1W∗

1 �W2W2 and by [14, Cor. 7.7.4],

η(W1,J ) = det(Q∗W1W∗
1Q) ≤ det(Q∗W2W∗

2Q) = η(W2,J ).

Since our subspaces for multiple exponentials will be built from a union of sub-
spaces for each exponential, this second result shows that the union satisfies a nec-
essary (but not sufficient) condition for the combined subspace to have the same
efficiency as each component subspace had for a single exponential.

Theorem 3.3. If W, {Jk}k are subspaces of Cn, J =
⋃
k Jk, and the dimension

of W exceeds J , then η(W,J ) ≤ mink η(W,Jk).
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Proof. Let Q = [Q1,Q2] be an orthonormal basis for J , where Q1 ∈ Cn×q1 and
Q2 ∈ Cn×q2 , such that Q1 ∈ Cn×q1 is a basis for J`, and let W be an orthonormal
basis for W. Then as σk(W∗Q) ≤ 1,

η(W,J ) =
q1+q2∏
k=1

σk(W∗Q)2 ≤
q1∏
k=1

σq2+k(W∗Q)2 ≤
q1∏
k=1

σk(W∗Q1)2 = η(W,J`),

where the second inequality follows from deleting the last q2 columns of W∗Q and
applying [15, Cor. 3.1.3]. The result follows by repeating this process for each J`.

The final result provides a lower bound on the efficiency for a nearby Jacobian.
This bound is used in subsection 5.1 to convert a check for efficiency over a continuous
set of subspaces J (θ) into a check over a discrete set.

Theorem 3.4. If W, J1, and J2 are subspaces of Cn and J1 and J2 have the
same dimension, then η(W,J2)η(J1,J2) ≤ η(W,J1).

Proof. Let Q1 and Q2 be orthonormal bases for J1 and J2. As PW�PJ2PWPJ2 ,
we obtain the lower bound after application of [14, Cor. 7.7.4]

η(W,J1) = det(Q∗1PWQ1) ≥ det(Q∗1Q2Q
∗
2PWQ2Q

∗
2Q1)

= det(Q∗2PWQ2) det(Q∗1Q2Q
∗
2Q1) = η(W,J2)η(J1,J2).

With these general results from the two preceding sections complete, we now turn
to the specifics of the exponential fitting problem.

4. Fast inner products for exponential fitting. In the two preceding sec-
tions, we have argued that subspaces W should be chosen such that the subspace
angles between W and the range of the Jacobian are small. Now, in this section we
turn to the specific problem of selecting a family of subspaces W for the exponential
fitting problem that not only satisfy this requirement, but also have orthonormal bases
W such that projected model W∗f([ω,a]) and projected Jacobian W∗J([ω,a]) can
be inexpensively computed in fewer than O(n) operations. For the exponential fitting
problem we chose the subspace W(µ) parameterized by µ ∈ Cm with corresponding
orthonormal basis W(µ) ∈ Cn×m:

(25) W(µ) := Range V(µ), W(µ) := V(µ)R(µ)−1, R(µ) ∈ Cm×m,

where V(µ) ∈ Cn×m is the Vandermonde matrix [V(µ)]j,k = ejµk and R(µ) is
constructed as described in subsection 4.3 such that W(µ) has orthonormal columns.
We call the parameters µ interpolation points since if the entries of ω are a subset of
the entries of µ, then the projected model interpolates the full model:

(26) ω ⊂ µ =⇒ PW(µ)f([ω,a]) = PRangeV(µ)V(ω)a = V(ω)a = f([ω,a]).

In this section we show how to inexpensively compute the product of W(µ) with the
exponential fitting model f([ω,a]) and Jacobian J([ω,a]),

(27) J([ω,a]) :=
[
V′(ω) diag(a) V(ω)

]
, [V′(ω)]j,k =

∂

∂ωk
[V(ω)]j,k = jejωk .

Examining the products W(µ)∗f([ω,a]) and W(µ)∗J([ω,a]),

W(µ)∗f([ω,a]) = R(µ)−∗V(µ)∗V(ω)a,(28)

W(µ)∗J([ω,a]) =
[
R(µ)−∗V(µ)∗V′(ω) diag(a) R(µ)−∗V(µ)∗V(ω)

]
,(29)
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reveals two matrix multiplications of size n, V(µ)∗V(ω) and V(µ)∗V′(ω), that need
to be inexpensively computed. Here we use the geometric sum formula and gener-
alization provided by Theorem B.2 in Appendix B to compute the entries of these
products in closed form. Unfortunately, these formulas exhibit catastrophic cancella-
tion in finite precision arithmetic, necessitating careful modifications to obtain high
relative accuracy as described in subsection 4.1 for V(µ)∗V(ω) and in subsection 4.2
for V(µ)∗V′(ω). Additionally, we discuss how to compute R(µ) inexpensively from
V(µ)∗V(µ) in subsection 4.3. The choice of interpolation points µ is later discussed
in section 5 and combined with these results yields our algorithm for exponential
fitting described in section 6.

4.1. Geometric sum. Each entry in the product of two Vandermonde matri-
ces V(µ)∗V(ω) is a geometric sum and hence has a closed form expression via the
geometric sum formula:

(30) [V(µ)∗V(ω)]j,k =
n−1∑
`=0

eµj`eωk` =


1− en(µj+ωk)

1− eµj+ωk
, eµj+ωk 6= 1;

n, eµj+ωk = 1.

In finite precision arithmetic this formula exhibits catastrophic cancellation when
eµj+ωk ≈ 1. Fortunately, many standard libraries provide the special function expm1
that evaluates ex − 1 to high relative accuracy. However, even with this special
function, there is still a removable discontinuity at eµj+ωk = 1. Hence in floating point
we patch this function using a two-term Taylor series expansion around eµj+ωk = 1:

(31) [V(µ)∗V(ω)]j,k =


expm1(n(µj + ωk))
expm1(µj + ωk)

, | expm1(µj + ωk)| > 10−15;

n(1 + (n− 1)(µj + ωk)/2), | expm1(µj + ωk)| ≤ 10−15.

In our numerical experiments, this expression has a relative accuracy of ∼10−16 when
compared to a 500-digit reference evaluation of (30) using mpmath [19].

4.2. Geometric sum derivative. Entries of the product V′(µ)∗V(ω) are no
longer a geometric sum, but a generalized geometric sum that has a closed form
expression given by Theorem B.2 in Appendix B:

[V(µ)∗V′(ω)]j,k =
n−1∑
`=0

`eµj`eωk`

=


−nen(µj+ωk)

1− eµj+ωk
+
eωk+µj (1− en(ωk+µj))

(1− eωk+µj )2
, eωk+µj 6= 1;

n(n− 1)/2, eωk+µj = 1.

(32)

As with the geometric sum formula, this expression also exhibits catastrophic can-
cellation, but this can no longer be fixed using standard special functions. Instead,
we derive a more accurate expression in floating point arithmetic by rearranging the
expression in the first case and using a Taylor series about eµj+ωk = 1 in the second.
Defining δj,k := µj + ωk ∈ R × [−π/2, π/2)i (removing periodicity in the imaginary
part), the first case of (32) can be rearranged to yield

(33)
−nenδj,k

1− eδj,k
+
eδj,k(1− enδj,k)

(1− eδj,k)2
=

1− enδj,k

1− eδj,k

[
eδj,k

1− eδj,k
− nenδj,k

1− enδj,k

]
.
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Although the expression on the right displays even worse catastrophic cancellation
than the expression on the left, the first term can be computed using expm1, and the
expression inside the brackets has a rapidly converging Taylor series:

eδ

1− eδ
− nenδ

1− enδ
=
n− 1

2
+

(n2 − 1)δ
12

− (n4 − 1)δ3

720
+

(n6 − 1)δ5

30240
− (n8 − 1)δ7

1209600

+
(n10 − 1)δ9

47900160
− 691(n12 − 1)δ11

1307674368000
+O(n14δ13).

Calling the first seven terms of this expansion the special function expdiff(n, δ), we
then evaluate the product V(µ)∗V′(ω) in finite precision arithmetic using
(34)

[V(µ)∗V′(ω)]j,k =


nenδj,k expm1(δj,k)− eδj,k expm1(δj,kn)

[expm1(δj,k)]2
, |δj,k| > 0.5/n;

expm1(nδj,k)
expm1(δj,k)

expdiff(n, δj,k), 0 < |δj,k| ≤ 0.5/n;

n(n− 1)/2, δj,k = 0.

In our numerical experiments, this expression has a relative accuracy of ∼10−15 when
compared to a 500-digit reference evaluation of (33) using mpmath.

4.3. Orthogonalization. Finally we need to inexpensively compute the matrix
R(µ) such that V(µ)R(µ)−1 has orthonormal columns. One approach would be
to simply take the QR-factorization of V(µ), but this has an O(n)-dependent cost.
Instead, our approach is to form V(ω)∗V(ω) using (30) and take either its Cholesky
decomposition or its eigendecomposition to compute R(µ):

V(µ)∗V(µ) = R(µ)R(µ)∗ (Cholesky),

V(µ)∗V(µ) = U(µ)Λ(µ)U(µ)∗ (eigendecomposition), R(µ) = U(µ)Λ(µ)1/2.

Although the Cholesky decomposition should be preferred since V(µ)∗V(µ) is posi-
tive definite provided each of the {eµj}j is distinct, in finite precision arithmetic this
product can have small negative eigenvalues. Instead we compute R(µ)−1 using the
eigendecomposition, truncating the small (< 10−14) eigenvalues.

5. A subspace for exponential fitting. With the results of the previous sec-
tion, we can now inexpensively project the model and Jacobian onto the subspace
W(µ). However, this leaves one question: how do we choose the interpolation points
µ such that the subspace angles between W(µ) and the exponential fitting Jacobian,

(35) J([ω,a]) =
[
V′(ω) diag(a) V(ω)

]
, [V′(ω)]j,k =

∂

∂ωk
[V(ω)]j,k = jejωk ,

are small? Immediately we note that these subspace angles do not depend on a (if
any entry of a was zero, we would instead fit fewer exponentials); hence we define

(36) J (ω) := Range
[
V′(ω) V(ω)

]
.

Structurally, it may seem impossible to have small subspace angles betweenW(µ) and
J (ω) since W(µ) = Range V(µ) does not contain any columns from V′. However,
since columns of V′ are the derivatives of the columns of V, we can approximate the
range of V′ using small, finite difference steps δ− and δ+:

(37) V(ω) ≈ V(ω + δ+) + V(ω + δ−)
2

, V′(ω) ≈ V(ω + δ+)−V(ω + δ−)
δ+ − δ−

.
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Fig. 2. An illustration of the box partition of the parameter space ω ∈ (−∞, 0] × [−π, π)i
for exponential fitting. For a given exponential with frequency ω denoted by ×, we select the box
containing it, denoted in red, and the corresponding four interpolation points at the corners, denoted
by •. The blue shaded region shows the set of ω where the efficiency at ω using this subspace is at
least 95%. This region includes the entire box and extends outward. The figure on the right shows
the same features under the exponential map, exposing the periodicity of the parameter space. (Color
available online.)

Hence, for an appropriate choice of interpolation points, the subspace angles be-
tween W(µ) and J (ω) are small; for example, the interpolation points δ±(ω) =
0.8 Reω ± max{−0.52 Reω, 1.39/n} yield a subspace with 95% efficiency for any
ω ∈ (−∞, 0]× [−π, π)i. Here our approach for selecting interpolation points is to di-
vide the parameter space for a single exponential with frequency ω ∈ (−∞, 0]×[−π, π)
into a series of boxes as shown in Figure 2. These boxes have been constructed such
that when the corners of the box containing ω are taking as interpolation points,
the efficiency of this subspace is at least 95% and hence the subspace angles between
W(µ) and J (ω) are small. Then, for multiple exponentials, we simply combine the
subspaces generated by this heuristic, justified by Theorem 3.3 that this combination
is a necessary condition for the combined subspace to also have at least 95% efficiency.
There are several advantages to this box partition approach. By limiting ourselves
to a finite number of interpolation points, we can frequently reuse the multiplication
V(µj)∗ỹ as the subspace updates. Moreover, constructing this subspace is inexpen-
sive, allowing frequent updates during optimization. In the remainder of this section
we first discuss a practical algorithm for building this box partition for any target
efficiency and then give the coordinates for box partition with 95% efficiency.

5.1. Building the partition. Our goal in constructing the box partition is to
guarantee that the target efficiency ηtarget is obtained for every single exponential
with frequency ω inside the box. This is an expensive task, so we build our boxes
to simplify the verification process. As shown in Figure 2, our box partition consists
of a series of stacks where each stack has twice as many boxes as the one on its left,
evenly dividing the imaginary component of the parameter space. Then, as efficiency
depends on δj,k = µj + ωk (cf. (30) and (32)), simultaneously shifting the imaginary
parts of µj and ωk does not change δj,k and hence verifying that one box in the stack
obtains the target efficiency for each ω inside establishes the same for the remaining
boxes in the stack. With this construction, there is only one set of free parameters:
the real coordinates of each box {α`}`≥0. We choose these α`, starting from α0 = −∞,
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by making α` as large as possible while still obtaining the target efficiency inside each
box:

α` = maximize
α>α`−1

α such that ηmin ≤ minimize
ω∈[α`−1,α]×[0,2π/2`]i

η(W(µ),J (ω)),

where µ =
[
α`−1 α`−1 + 2π/2`i α α+ 2π/2`i

]
.

(38)

This is a challenging nested optimization problem over a continuous set of ω, so we
invoke Theorem 3.4 to construct an auxiliary grid of exponentials where obtaining
a slightly higher efficiency at these discrete points guarantees the target efficiency is
reached for any ω inside the box.

To construct this auxiliary grid, we specify a series of real parts aj ∈ R and
imaginary spacings bj ∈ R+ that define the grid points zj,k := aj + ikbj . To specify
aj and bj with a grid efficiency of ηgrid, starting from a0 = α` we solve the single
variable finding root problem that yields aj and bj ,

(39) η(J (aj),J (a+ (1 + 1i)c)) = ηgrid ⇒ aj+1 := aj + c, bj+1 := c,

setting b0 = b1. Then, invoking Theorem 3.4, we have the bound

(40) minimize
ω∈[α`−1,α]×[0,2π/2`]i

η(W(µ),J (ω)) ≤ minimize
j,k∈Z+

zj,k∈[α`−1,α]×[0,2π/2`]i

ηgrid ·η(W(µ),J (zj,k)).

Substituting this bound in (38) replaces the inner optimization with finding the min-
imum over a discrete set, simplifying the problem. Further, since the accuracy of the
efficiency computation is limited by the grid, we restrict the maximization over α to
the discrete set of grid points aj .

5.2. The 95% efficiency partition. Here we provide the coordinates for a
box partition with a target efficiency of 95% constructed using ηgrid = 0.99999 in
Table 1 for multiple values of n. In practice, we restrict our interpolation points
to the closed left half plane and hence set the first α` greater than zero to zero.
Although this choice of target efficiency was arbitrary, it does make the rightmost
interpolation points correspond to the nth roots of unity that appear in the discrete
Fourier transform (DFT).

Although Table 1 only displays the coordinates for several values of n, two pat-
terns emerge that allow us to estimate the box partition for any n. First note that
the values for α` when n 6=∞ match those for n =∞ for all but the last two, which
are always larger. Hence the values of α` for n = ∞ are a lower bound on those for
arbitrary n. The other pattern is that after the first five, the α` for n = ∞ shrink
exponentially with

(41) α` ≈ −2.9720 · 2−`, ` ≥ 5.

These two patterns allow us to pick the box partition using α` from the n =∞ case,
extending this sequence using the approximation above for larger values of `.

When n is not a power of two, the box partition will no longer have the nth roots
of unity available as interpolation points. Due to their connection with the DFT, we
prefer to keep nth roots of unity available and thus modify the construction of the
box partition. For an n that is not a power of two, everything remains the same
except when ω is in the rightmost stack, Reω ∈ (α̂̀, 0]. In this case we no longer use
boxes, but pick the two closest interpolation points with Reµ = α̂̀ from the stack to
the left and the two closest nth roots of unity where Reµ = 0. Although we are no
longer able to guarantee 95% efficiency for exponentials in this range, this heuristic
still provides a high efficiency subspace in practice.
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Table 1
The real coordinates α` of the box partition determined by solving (38) with ηgrid = 0.99999.

With this discretization, these values are accurate to approximately three digits.

` n = 16 n = 256 n = 1024 n = 220 n =∞

1 −1.421 · 100 −1.421 · 100 −1.421 · 100 −1.421 · 100 −1.421 · 100

2 −6.667 · 10−1 −6.667 · 10−1 −6.667 · 10−1 −6.667 · 10−1 −6.667 · 10−1

3 −3.480 · 10−1 −3.529 · 10−1 −3.529 · 10−1 −3.529 · 10−1 −3.529 · 10−1

4 8.121 · 10−2 −1.819 · 10−1 −1.819 · 10−1 −1.819 · 10−1 −1.819 · 10−1

5 −9.198 · 10−2 −9.198 · 10−2 −9.198 · 10−2 −9.198 · 10−2

6 −4.617 · 10−2 −4.617 · 10−2 −4.617 · 10−2 −4.617 · 10−2

7 −2.294 · 10−2 −2.313 · 10−2 −2.313 · 10−2 −2.313 · 10−2

8 3.552 · 10−3 −1.157 · 10−2 −1.157 · 10−2 −1.157 · 10−2

9 −5.748 · 10−3 −5.782 · 10−3 −5.782 · 10−3

10 8.713 · 10−4 −2.891 · 10−3 −2.891 · 10−3

11 −1.445 · 10−3 −1.445 · 10−3

12 −7.227 · 10−4 −7.227 · 10−4

13 −3.613 · 10−4 −3.613 · 10−4

14 −1.807 · 10−4 −1.807 · 10−4

15 −9.033 · 10−5 −9.033 · 10−5

16 −4.516 · 10−5 −4.516 · 10−5

17 −2.258 · 10−5 −2.258 · 10−5

18 −1.129 · 10−5 −1.129 · 10−5

19 −5.611 · 10−6 −5.645 · 10−6

20 8.605 · 10−7 −2.822 · 10−6

6. A projected exponential fitting algorithm. Equipped with subspace
W(µ) for which the projected model W(µ)∗f([ω,a]) and Jacobian W(µ)∗J([ω,a])
can be inexpensively computed as described in section 4 and combined with the heuris-
tic from section 5 to pick interpolation points µ so that the subspace angles between
W(µ) and the range of the Jacobian J (ω) are small, we now construct an algorithm
to solve the exponential fitting problem using projected nonlinear least squares. Our
basic approach is to solve a sequence of projected nonlinear least squares problems
using Levenberg–Marquardt and infrequently update the subspace during the course
of optimization. In this section we describe several important details for this algo-
rithm. First, in subsection 6.1 we show how variable projection [9, 10] can be used
to implicitly solve for the amplitudes a revealing an optimization problem over fre-
quencies ω alone; then in subsection 6.2 we discuss the details of how to update the
subspace; and finally in subsection 6.3 we show how to obtain initial estimates of the
frequencies ω to enable a fair comparison with subspace based methods which do not
require initial estimates.

6.1. Variable projection. The key insight behind variable projection origi-
nated in a Ph.D. thesis by Scolnik on the exponential fitting problem [31]. Recog-
nizing the optimal linear parameters a are given by the pseudoinverse for a fixed ω,
a = V(ω)+ỹ, allows the residual to be stated as a function of ω alone:

(42) r([ω,a]) = f([ω,a])− ỹ = V(ω)a− ỹ⇒
[
V(ω)V(ω)+ − I

]
ỹ = P⊥V(ω)ỹ,

where P⊥V(ω) is the orthogonal projector onto the subspace perpendicular to the range
of V(ω). This allows us to define an equivalent optimization problem over ω alone:

(43) minimize
ω∈Cp

‖r̂(ω)‖22, r̂(ω) := P⊥V(ω)ỹ.
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Golub and Pereyra [10] provide the Jacobian for this variable projection residual r̂,

(44) [Ĵ(ω)]·,k := −
[
P⊥V(ω)

∂V(ω)
∂ωk

V(ω)− + V(ω)−∗
(
∂V(ω)
∂ωk

)∗
P⊥V(ω)

]
ỹ,

and we can further exploit the structure of the exponential fitting problem to reveal
a simple expression for this Jacobian. Defining the short-form QR-factorization of
V(ω), V(ω) = Q(ω)T(ω), this Jacobian becomes
(45)

Ĵ(ω) = [I−Q(ω)Q(ω)∗] V′(ω) diag(V(ω)+ỹ)−Q(ω)T(ω)−∗ diag(V′(ω)∗r̂(ω)).

With the linear parameters removed, the Levenberg–Marquardt method can then be
applied to the variable projection residual r̂(ω) and Jacobian Ĵ(ω). The same expres-
sions also apply to the projected problem upon making the substitutions: V(ω) →
W(µ)∗V(ω), V′(ω)→W(µ)∗V′(ω), and ỹ→W(µ)∗ỹ.

6.2. Updating subspaces. As the analysis in section 2 suggests that the sub-
space angles between W(µ) and J (ω) need to remain small, we repeatedly update
the interpolation points during the course of optimization. Here we use the efficiency
based heuristic described in section 5 to pick interpolation points, as a high efficiency
ensures small subspace angles between W(µ) and J (ω). However, rather than dis-
carding interpolation points no longer required by this heuristic, we preserve them,
continually expanding the subspace. This is necessary to prevent the optimization
algorithm from entering a cycle.

6.3. Initialization. A final issue concerns how we provide the initial values of
the optimization algorithm. Subspace based methods do not require these initial val-
ues, and so to provide a fair comparison we use a simple initialization heuristic. It is
well known that peaks in the DFT of a signal, F∗nỹ, where [Fn]j,k = n−1/2e2πijk/n,
correspond to the frequencies present [34]. This forms the foundation of many ini-
tialization approaches. For example, in magnetic resonance spectroscopy these peaks
can be identified manually [38, section 3.3] to initialize an optimization algorithm.
Here, we pick the initial estimate iteratively. Starting with the first exponential, we
set ω1 = 2πik̂/n, where k̂ is the largest entry in F∗nỹ. Then after the optimization
algorithm has terminated, we initialize ω2 based on the largest entry of the residual
F∗nr̂(ω). This process repeats until the desired number of exponentials have been
recovered. This approach is similar to that of Macleod [23], but we optimize all the
frequencies ω at each step.

7. A numerical example. To demonstrate the effectiveness of projected non-
linear least squares for exponential fitting, we apply the algorithm described in sec-
tion 6 to a magnetic resonance spectroscopy test problem from [39, Table 1]; see, e.g.,
[12, section 12.4] for a discussion of the underlying physics. This example describes a
continuous complex signal y(t) consisting of eleven exponentials:

y(t) =
11∑
k=1

ake
135iπ/180e(2iπfk−dk)t, where

a = [ 75 150 75 150 150 150 150 150 1400 60 500 ],
f = [ −86 −70 −54 152 168 292 308 360 440 490 530 ],
d = [ 50 50 50 50 50 50 50 25 285.7 25 200 ],

(46)

from which we construct measurements ỹ ∈ Cn by sampling y(t) uniformly in time and
contaminating these with independent and identically distributed additive Gaussian
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Fig. 3. The median wall clock time from from ten runs for four different exponential fitting
algorithms implemented in MATLAB 2016b, applied to data from (46), and running on a 2013 Mac
Pro with a 3.5 GHz 6-Core Intel Xeon E5 and 16 GB of RAM clocked at 1866 MHz. We also
show the time taken to form V(µ)∗ỹ for µ ∈ C44, which is a lower bound on the time taken by our
projected nonlinear least squares algorithm; this is approximately the time required to check the first
order necessary conditions.

noise g with Cov g = I according to the formula

(47) [ỹ]k = y(δ(n)k) + 15[g]k, δ(n) :=
256
3n
· 10−3.

This allows us to scale the original problem which took n = 256 by increasing the
sample rate δ. In this section we consider three algorithms applied to this expo-
nential fitting problem: conventional nonlinear least squares, our projected nonlinear
least squares, and HSVD [1] as a representative of subspace based methods due to
its simple implementation. We present our results using two different implementa-
tions of HSVD: an implementation using dense linear algebra, and fast implemen-
tation using an O(n log n) Hankel matrix-vector product and an iterative SVD al-
gorithm following [22]. Our goal is to compare these algorithms on two metrics:
the wall clock time taken to solve the exponential fitting problem and the pre-
cision of the resulting parameter estimates. A MATLAB implementation of our
projected nonlinear least squares algorithm for exponential fitting, the two HSVD
implementations described, and code to construct these examples are provided at
https://github.com/jeffrey-hokanson/ExpFit. In these implementations we use tight
convergence tolerances: 10−16 for both residual norm and solution change in the
MATLAB nonlinear least squares solver lsqnonlin, and 10−16 for the Ritz residual
in the MATLAB routine eigs used in the fast HSVD implementation.

7.1. Timing. As these three algorithms use different paradigms for solving the
exponential fitting problem, we compare their performance using total wall clock
time. Figure 3 shows the time taken by each algorithm when applied to the magnetic
resonance spectroscopy test problem given in (46). Asymptotically, the time taken
by the dense HSVD implementation scales like O(n3) due to the dense SVD, whereas
the fast HSVD implementation scales like O(n log n) due to the use of the fast Fourier
transform (FFT) to compute the Hankel matrix-vector product. The cost of both
nonlinear least squares approaches also scales like O(n log n) due to their use of the

https://github.com/jeffrey-hokanson/ExpFit
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Fig. 4. The density of standardized error in the parameter estimate θ̃, Γ1/2(θ̃− θ̂) as described
in subsection 7.2. Thick curves show the expected distribution of the 2-norm of the standardized
error, and the filled regions show the empirically determined density from 4000 realizations of each
method for each n. The dotted lines shows the density of the standardized error in the full nonlinear
least squares parameter estimate.

FFT in the initialization heuristic. However, although these last three algorithms
each have the same asymptotic rate, their constants are different. In the limit of large
data, the projected nonlinear least squares implementation is fastest, but for small
data, the repeated initialization of the optimization algorithm dominates the cost. It
is possible that a more careful implementation could avoid this cost and bring the
wall clock time for projected nonlinear least squares closer to, or perhaps faster than,
the fast HSVD implementation in the limit of small data.

7.2. Precision. In addition to providing faster performance than fast HSVD for
large data, the projected nonlinear least squares approach also yields more precise pa-
rameter estimates. Considering the same magnetic resonance spectroscopy example,
we seek to quantify the precision of our parameter estimates. In the limit of small
noise, the error in the parameter estimate θ̃ = [ω̃, ã] relative to the true parameters
θ̂ = [ω̂, â] is normally distributed with zero mean and covariance:

(48) Γ := J(θ̂)∗Eg[gg∗]J(θ̂) = J(θ̂)∗J(θ̂) · Eg[‖g‖22] ≈ Cov θ̃.

If Γ is actually the covariance of θ̃, then Γ−1/2(θ̃−θ̂) is normally distributed with zero
mean and unit variance. Hence, the norm of the mismatch ‖Γ−1/2(θ̃ − θ̂)‖22 follows
a χ2 distribution with 44 degrees of freedom. As seen in Figure 4, the distribution
of error of the projected nonlinear least squares problem approximately matches that
of the full problem and approaches the desired χ2 distribution as n becomes large.
However, HSVD provides less precise parameter estimates, a result that follows from
the analysis of Rao [29].

8. Discussion. In this paper we have shown that by solving a sequence of pro-
jected nonlinear least squares problems we can substantially improve the run time
performance with a negligible loss of accuracy for solving the exponential fitting prob-
lem when compared to both conventional nonlinear least squares and HSVD, a typical
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subspace based approach. For the exponential fitting problem, there are still several
open questions. Is there a better choice for selecting interpolation points than our
box partition? Are there better subspaces, such as one that includes not only V(µ),
but V′(µ) as well? More generally: Can we provide conditions that guarantee the
convergence of the series of projected problems? Can we bound the error incurred by
the projection in a deterministic sense? Finally, we ask, What were the key features
that allowed the projected approach to work for the exponential fitting problem and
could this approach be applied to other problems? One key feature was that projected
model W∗

` f(θ) and Jacobian W∗
`J(θ) could be computed inexpensively. The other

key feature was that we were able to generate subspaces W` such that the subspace
angles between W` and the range of the Jacobian J (θ) remained small. These two
requirements limit the applicability of these results to specific pairs of models f(θ) and
subspaces W`, but for those problems that satisfy these requirements the projected
nonlinear least squares approach presents a way to improve performance.

Appendix A. Projected least squares error bounds. Here we provide two
lemmas used in section 2 related to the accuracy of a projected least squares problem.

Lemma A.1. Let A ∈ Cn×q have full column rank, and let b ∈ Cn with respective
range A and span B. Let W be an m-dimensional subspace of Cn where m ≥ q, and
let PW be the orthogonal projector onto W where PWA has full column rank. If x is
the minimizer of ‖Ax− b‖2 and y is the minimizer of ‖PW(Ay − b)‖2, then

(49) ‖x−y‖2 ≤‖A+‖2‖b‖2
[
sinφq(W,A) sinφ1(W,B)+tan2 φq(W,A) cosφ1(W,B)

]
.

Proof. Using the pseudoinverse, we write x and y as

x = (A∗A)−1A∗b,(50)

y = (A∗PWA)−1A∗PWb.(51)

Inserting the decomposition of the identity I = PW + P⊥W before b in x,

(52) x = (A∗A)−1A∗PWb + (A∗A)−1A∗P⊥Wb,

we then note the difference between x and y is

(53) x− y = (A∗A)−1A∗P⊥Wb +
[
(A∗A)−1 − (A∗PWA)−1]A∗PWb.

Replacing A with its short-form SVD, A = UΣV∗, and PW with WW∗, where W
is an orthonormal basis for W, we have

x− y = VΣ−1U∗P⊥Wb−VΣ−1 [(U∗WW∗U)−1 − I
]
Σ−1U∗WW∗b,

‖x−y‖2 ≤ ‖Σ−1‖2
(
‖P⊥WU‖2‖P⊥Wb‖2+‖(U∗WW∗U)−1− I‖2‖U∗W‖2‖W∗b‖2

)
.

Then invoking the subspace angle identities, ‖P⊥Wb‖2 = sinφ1(W,B)‖b‖2, ‖W∗b‖2 =
cosφ1(W,B)‖b‖2, ‖U∗W‖2 = cosφ1(W,A), and ‖P⊥WU‖2 = sinφq(A,W),

(54) ‖x− y‖2 ≤ ‖Σ−1‖2‖b‖2
(

sinφq(W,A) sinφ1(W,B)

+ ‖(U∗WW∗U)−1 − I‖2 cosφ1(W,A) cosφ1(W,B)
)
.

To bound ‖(U∗WW∗U)−1−I‖2, we note that as U∗WW∗U is positive semidefinite,
there exists an α ≥ 0 such that U∗WW∗U � α2I. This implies

λk(U∗WW∗U)− α2 ≥ 0 ⇒ σk(W∗U)2 − α2 ≥ 0 ∀k ∈ 1, . . . , q,(55)
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where λk(X) is the kth eigenvalue in descending order of X. The largest α satis-
fying this inequality is α = σq(W∗U) = cosφq(W,A). Invoking [14, Cor. 7.7.4],
U∗WW∗U � α2I implies (U∗WW∗U)−1 � α−2I and hence

(U∗WW∗U)−1 − I � α−2I− I = (α−2 − 1)I.(56)

Upon taking the norm, we have

‖(U∗WW∗U)−1 − I‖2 ≤ (α−2 − 1).(57)

Thus α−2−1 = sec2 φq(W,A), and invoking trigonometric identities, sec2 φq(W,A)−
1 = tan2 φq(W,A); hence

(58) ‖x− y‖2 ≤ ‖Σ−1‖2‖b‖2
(

sinφq(W,A) sinφ1(W,B)

+ tan2 φq(W,A) cosφ1(W,A) cosφ1(W,B)
)
.

By applying the upper bound cosφ1(W,A) ≤ 1 and noting ‖Σ−1‖2 = ‖A+‖2, we
obtain the desired bound.

Lemma A.2. In the same setting as Lemma A.1,

‖A∗Ay −A∗b‖2 ≤
cosφ1(A,W) sinφq(A,W)

cos2 φq(A,W)
‖A‖2‖P⊥Ab‖2.(59)

Proof. Using the pseudoinverse,

A∗Ay −A∗b = A∗A(A∗PWA)−1A∗PWb−A∗b.(60)

Then, inserting the decomposition of the identity I = PA + P⊥A between PW and b,

A∗Ay − b = A∗A(A∗PWA)−1A∗PW(PA + P⊥A)b−A∗b.(61)

After expanding the first term on the right, the PA component is A∗b, i.e.,

A∗A(A∗PWA)−1A∗PWPAb=A∗A(A∗PWA)−1A∗PWA(A∗A)−1A∗b=A∗b,(62)

and hence cancels A∗b leaving one term:

A∗Ay −A∗b = A∗A(A∗PWA)−1A∗PWP⊥Ab.(63)

Next, we define the oblique projector above X := A(A∗PWA)−1A∗PW in terms of
the SVD of A. If A has a full and reduced SVD

(64) A = UΣV∗ =
[
U1 U2

] [Σ1
0

]
V∗ = U1Σ1V∗,

then this oblique projector is

X = UΣV∗(V∗Σ∗UWW∗UΣV∗)−1VΣ∗U∗WW∗

= U1Σ1V∗V(Σ1U∗1WW∗U1Σ1)−1V∗VΣ∗1U
∗
1WW∗

= U1Σ1Σ−1
1 (U∗1WW∗U1)−1Σ−1

1 Σ∗1U
∗
1WW∗

= U1(U∗1WW∗U1)−1U∗1WW∗.
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Inserting this result into the expression for A∗Ay −A∗b, we obtain the bound

‖A∗Ay −A∗b‖2 = ‖A∗U1(U∗1WW∗U1)−1U∗1WW∗U2U∗2b‖2
≤ ‖A‖2‖(U∗1WW∗U1)−1‖2‖U∗1W‖2‖W

∗U2‖2‖U∗2b‖2
= σq(U∗1W)−2σ1(U∗1W)σ1(W∗U2)‖A‖2‖P⊥Ab‖2

=
cosφ1(A,W) sinφq(A,W)

cos2 φq(A,W)
‖A‖2‖P⊥Ab‖2.

Appendix B. Generalized geometric sum formula. A critical component
for our algorithm is the ability to compute in closed form the generalized geometric
sum,

(65)
n2−1∑
k=n1

kpeδk,

where δ ∈ C, and p, n1, n2 are nonnegative integers. The standard geometric sum
formula provides a closed form expression when p = 0, and when eδ = 1, this sum can
be written in terms of Bernoulli polynomials [25, eq. (24.4.9)]. The following lemma
establishes the remaining case when eδ 6= 1 and p > 0.

Lemma B.1. Let δ ∈ C with eδ 6= 1, p, n1, n2 ∈ Z+, where 0 ≤ n1 ≤ n2; then

(66)
n2−1∑
k=n1

kpeδk =
p∑
`=0

χn1(p, `)eδ(n1+`) − χn2(p, `)eδ(n2+`)

(1− eδ)`+1 ,

where χn(p, `) is given by the recurrence

(67) χn(p+ 1, `) = (n+ `)χn(p, `) + k χn(p, `− 1); χn(0, `) = δ`,0, p, ` ≥ 0.

Proof. Multiplying each term of the geometric sum by kp corresponds to a pth
derivative with respect to δ of each entry. Since this is a finite sum, we pull the
derivative outside the sum, yielding

(68)
n2−1∑
k=n1

kpeδk =
n2−1∑
k=n1

∂p

∂δp
eδk =

∂p

∂δp

n2−1∑
k=n1

eδk =
∂p

∂δp
eδn1 − eδn2

1− eδ
.

To obtain an explicit formula for the derivative on the right, we show by induction

(69)
∂p

∂δp
enδ

1− eδ
=

p∑
`=0

χn(p, `)
e(n+`)δ

(1− eδ)`+1 .

The base case p = 0 holds as χn(0, 0) = 1. The inductive step follows by taking the
derivative of each side:

∂

∂δ

p∑
`=0

χn(p, `)
e(n+`)δ

(1− eδ)`+1 =
p+1∑
`=0

[χn(p, `)(n+ `) + χn(p, `− 1)`]
e(n+`)δ

(1− eδ)`+1

=
p+1∑
`=0

χn(p+ 1, `)
e(n+`)δ

(1− eδ)`+1 .

Subtracting (69) evaluated at n = n2 from (69) evaluated at n = n1 yields (66).
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With this lemma, we now state the generalized geometric sum formula.

Theorem B.2 (generalized geometric sum formula). Given δ ∈ C, p ∈ Z+, and
n1, n2 ∈ Z with 0 ≤ n1 < n2 integers, then

(70)
n2−1∑
k=n1

kpeδk =



p∑
`=0

χn1(p, `)e(n1+`)δ − χn2(p, `)e(n2+`)δ

(1− eδ)`+1 , eδ 6= 1;

Bp+1(n2)−Bp+1(n1)
p+ 1

, eδ = 1;

where Bp is the pth Bernoulli polynomial.
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